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ABSTRACT 

Using Fitting classes we generalize some well known theorems on centralizers 
in finite groups. 

1. Introduction 

In this work, a group means a finite group. A nonempty class of  finite groups 0 

is called a Fitting class if: it is homomorphism-invariant, for every G E 0 every 

normal subgroup of G is a 0-group, and the product  of normal  0-subgroups of  

an arbitrary group G belongs to 0. A group G is called a 0-group if G ~ 0. In 

particular, the product  Fo(G) of all normal 0-subgroups of G is a 0-group. 

Let 0 and 0' be Fitting classes and denote by 00' the class of  groups G such 

that G/Fo(G) ~ 0'. We prove in Theorem 2.9 that 00' is Fitting class. Now define: 

i f  for n odd ( 0 0 ' ) 2  = 00' 
0~ = and 

for n even (00')n = (00')n_10, 

We obtain that F(oo,),,(G)/F(oo),_l (G) = Fo,~(G/F(oo,),_I(G)) (Corollary 2.14). 

I f  Fo(G/Fo(G)) = 1, we shall say that G has 0-length of order 1. A finite group 

is called 00'-separable if every composition factor of  G is either a 0-group or 

a 0'-group. Let 7~ denote the Fitting class of  z-groups. Now if we set 0~ = 0 ~ V~ 

we may express our principal result as follows: 

THEOREM A. I f  CG(Fo~(G)) is O~,-separable with O~-length of order 1, then 

O~,(G) -- 1 implies that Ca(Fox(G)) ~_ Fo~(G ). 
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Various corollaries of Theorem A generalize well known theorems of group 

theory. 

In Corollary 4.7, we prove that if CG(O(,,~).(G)), n > 2, is ~-separable then 

CG(O(~,,~),(G)) c_ O(~,,~),(G). For n = 2 we obtain that if C~(O~,~(G)) is ~z-separable 

then Ca(O~,~(G))_ O~,~(G). In particular we obtain Lemma 1.2.3 of Hall- 

Higman [3] : If  CG(O,~(G)) is zr-separable and O~,(G) = 1 then CG(O,~(G)) ~_ O~(G). 
Let v denote the Fitting class of  nilpotent groups. Corollary 4.8 says that if 

CG(F(~,;v,,),(G)), n >__ 2, is ~-solvable, then CG(F(~ .... ) , (G) )_  F(~,v~),(G). In 

particular, since O~,(G) = 1 implies that Fv=(G) = F(G), we obtain (when F(G) 
is a Fitting subgroup of G): if CG(F(G)) is ~-solvable and O~,(G)= 1 then 

C~(F(G)) c_ F(G). In addition, if we define FI(G) = F(G) and F"(G)/F"-I(G) 
= F(G/F"-I(G)), then Corollary 4.8 yields the following result: if Ca(F"(G)) 
is solvable then C~(F"(G)) c_ F"(G). 

The last two corollaries generalize the well-known theorem that if G is solvable 

then Ca(F(G)) ~_ F(G). 
Finally let K be an S~-subgroup of the re-solvable group G, i.e., K is a ~-group 

and I G:K[ is divisible by no primes in ~. We prove in Theorem 4.12 that 

CG(K n F~ .. . .  (G)) _ F~,,,,=(G). This result generalizes, to 7z-solvable groups, the 

theorem that if P is an Sp-subgroup of the p-solvable group G, then 

C6(P N Op,p(G)) ~_ Op,p(G). 
All these corollaries are derived from Theorem A by considering various Fitting 

classes. 

These results are part of the author's doctoral research at the Tel Aviv Uni- 

versity. The author wishes to express his appreciation to his thesis advisor, Pro- 

fessor M. Herzog, for his devoted guidance and encouragement. 

2. On Fitting classes 
It is assumed that the reader is familiar with the basic notation of  [1] and [2 3. 

DEFINITION 2.1. Let 0 be a nonempty class of  finite groups. If  G e 0, we shall 

say that G is a O-group. 
The class 0 is a Fitting Class if the following conditions hold: 

(i) Epimorphic images of 0-groups are 0-groups. 

(ii) Normal subgroups of 0-groups are 0-groups. 

(iii) The product of normal 0-subgroups of  a group G is a 0-group. 

Condition (i) does not appear in the definition of [1] and ]-4 3. Since we 

assume that 0-groups exist, it follows by (i) that 1 ~ 0. 
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DEFINITION 2.2. Let y~ denote the class of  re-groups, and v the class of  nilpo- 

tent groups. 

EXAMPLE 2.3. Both ~ and v are Fitting classes. 

One can now form the characteristic subgroup Fo(G ) of G, which is the product 

of all normal O-subgroups of G. Note that if 0 is the class v then Fv(G ) = F(G) 

is just the Fitting subgroup of  G, and if 0 is the class ~, then F~,(G) = O~(G). 

DEFINITION 2.4. Let 0, 0' be Fitting classes. Then 00' is the class of groups 

G such that G/Fo(G) e 0'. 

We wish to prove that 00' is a Fitting class. First, we state four Lemmas, 

which follow easily from the definitions. 

LEMMA 2.5. I f  O, O' are Fitting classes then e 00' i f  and only i f  there is a 

normal subgroup N eO of G such that G/N eO'. 

LEMMA 2.6. I f  O is a Fitting class and N is a normal subgroup of a group G, 

then Fo(G)N/N c_ Fo(G/N). 

LEMMA 2.7. I f  V, W, M are subgroups of a group G such that M <1 V and 

W ~  G, then VW/MW is an epimorphic image of V/M. 

LEMMA 2.8. Let 0 be a Fitting class and K a normal subgroup of a group G. 

Then Fo(K) = K ~ Fo(G). 

The previous lemmas imply the following: 

THEOREM 2.9. Let 0,0' be Fitting classes. Then 00' is a Fitting class. 

Let 0,0',0",...,0('), ... be Fitting classes. By Theorem 2.9 the symbols 

Foo,(G),F(oo,~o,, etc., are well defined. 

We shall write 00'0"... 0 (') for (...((00')0")...)0 ('). 

LEMMA 2.10. Let 0,0' be Fitting classes. Then 

(i) Fo(G) ~- Foo.(G) 

(ii) Fo(G) ~_ Fo,o(G). 

This follows at once from the definitions. 

DEFINITION 2.11. Let 0,0' be Fitting classes and let 

O, = ~0 for n odd 

tO ' for n even 

We define the Fitting Classes: (00')1 = 0 (00') 2 = 00' and (00'), = ((00'),_ 1)0,, 

n > 2 .  



64 z. ARAD Israel J. Math., 

Now, if 01, 02, 03 are Fitting classes it is clear that (0102)03 -- 01(0203). There- 

fore we shall write the Fitting class (00'), by 00'-.. 0n. 

DEFINITION 2.12. Let 0, 0' be Fitting classes. By repeated applications of Lemma 

2.10, we obtain a sequence of characteristic subgroups of G: 

1 c_ Fo(G) c_ Foo,(G) c_ Foo,o(G ) c_ .... 

This sequence is called the 00'-Series of G. 

Using the above lemmas we get 

THEOREM 2.13. Let 0,0' be Fitting classes. Then 

Foo,(G)/Fo(G ) = Fo,(G/Fo(G)) 

By induction we get (see def. 2.11.): 

COROLLARY 2.14. 

F(oo,)~(G)/F(oo,)n_~G) = Fo,,(G/F(oo,)~_,(G)). 

EXAMPLE 2.15. The ?~,-series of G is the upper ~-series of G. (For the de- 

finition of the upper ~-series of G see [2], chap. VI). 

3. The main theorem 

We shall now study two basic classes of groups which generalize the classes 

of ~-solvable groups and ~-separable groups. 

DEFINmON 3.1. Let 0, 0' be Fitting classes. We shall say that G is 00'-separa- 

ble if every composition factor of G is either a 0-group or a 0'-group. 

EXAMt'LE 3.2. G is ~-separable if and only if G is V~V~,-separable. 

DEFINITION 3.3. Let 0,0' be Fitting classes. We shall say that G is 00'-solvable 

if every composition factor is either a 0'-group or both an 0-group and a p-group 

for some prime p. 

EXAMPLE 3.4. G is zc-solvable if and only if G is ),~,-solvable. 

DEFINmON 3.5. Let Sep(0, 0') denote the class of 00'-separable groups, 

and Sol(0, 0') the class of 00'-solvable groups. 

The definitions immediately yield: 

LEMMA 3.6. Let 0,0' be Fitting classes, and let H be a normal subgroup 

of  G such that K and G/K are both either Sep(O,0')-groups or Sol(0,0')-groups. 

Then G is a Sep(O,0')-group or a Sol(0,0')-group, accordingly. 
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LEMMA 3.7. Let 0,0' be Fitting classes. Then Sep(0,0') and Sol(0,0') are 

Fitting classes. 

PROOF. Observe that as an immediate consequence of the definitions, homomor- 

phic images and normal subgroups of OO'-separable groups are also 00'-separable. 

Now, if H and K are normal O0'-subgroups of the group G, then Lemma 3.6 

implies that HK is a normal 00'-separable subgroup of  G. We obtain the con- 

clusion for Sol(0,0') similarly. 

LEMMA 3.8. Let 8,0' be Fitting classes, and let G be a O0'-separable 

group. Then : 

(i) A minimal normal subgroup of G is either a P-group or a O'-group. 

(ii) Fo(G) = Fo,(G) = 1 implies G = 1. 

(iii) The O0'-series of G terminates with G. 

PROOF. (i) Let K be a minimal normal subgroup of  G. Then K is characteris- 

tically simple, whence K is the direct product of isomorphic simple groups Ki, 

1 < i ___ n. Since K.~G,  there exists a composition series of  G in which K1 

is the last nontrivial term, whence K1 is a composition factor of  G. Since G 

is 00'-separable, K1,  and hence each Ki, is either a P-group or a 0'-group, 

proving (i). 

Statement (ii) follows immediately from (i). 

(ii) Assume that the 00'-series of  G terminates in a proper subgroup H of G. 

Thus, H = F(oo,)n(G)= F~oog,§ c G for all i >  1. Corollary 2.14 implies 

therefore that Fo(G/H ) = Fo,(G/H) = i .  Since by Lemma 3.7 G/H is 00'-separable, 

part (ii) yields G/H = 1, a contradiction. 

DEFINITION 3.9. Let 0~ denote the Fitting class of the intersection of a Fitting 

class 0 with ~ ,  i.e., 0~ = 0 n ~ .  (Note that 1 s 0~, and an intersection of  Fitting 

classes is obviously a Fitting class.) 

DEFINITION 3.10. Let 0 be a Fitting class. We shall say that G has O-length 

of order n if the 00-series of G terminates in F~oo)n(G), i.e., F~oo~_ ~(G) cF(oo~n(G) 

= F~oogn+,(G) for all i > 1. 

We state now our main result. 

THEOREM A. Let 0 be a Fitting class and let the subgroup C6(Fo~(G)) of G 

be O~?~,-separable, with O~-length of order 1. Then O~,(G)= 1 implies that 

C6(Fo~(G)) ~_ Fo~(G). 

PROOF. First we prove the following Lemma: If  0 is a Fitting class, then 
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Fo(Ca(Fo(G))) = Z(Fo(G)). We have C~(Fo(G)) nFo(G) = Z(Fo(G)). Now 

Fo(C~(Fo(G))) char Ca(Fo(G)) char G, so Fo(CG(Fo(G))) c_ Fo(G). Consequently 

Fo(Ca(Fo(G))) ~_ Fo(G ) N Ca(Fo(G)) = Z(Fo(G)). 

On the other hand Z(Fo(G))<Fo(G ) and Z(Fo(G))~_ Ca(Fo(G)). Hence 

Z(Fo(G)) c_ Fo(Ca(Fo(G))). 

We proceed with the proof of the theorem. Set Fo.(G) = H and C = Ca(H). 

We have to show that C g H or equivalently C = Z(H). We know from the 

above proved lemma that Fo.(C) = Z(H). Thus it suffices to prove that C = Fo.(C) 

Assume now that C ~ F0.(C). Since C is 0.~,-separable, the 0~7~,-series of C 

terminates with C by Lemma 3.8 (iii). By hypothesis Fo.(C/Fo.(C)) = 1. Since 

C/Fo.(C) is 0,7~,-separable, it follows by Lemma 3.8(ii) that L=Fo.~,(C) D Fo.(C) 

Since L/Fo.(C) -- Fo~ ,(C)/Fo.(C) = O~,(C/Fo.(C)) is a zc'-group, Z(H) = Fo.(C) 

is a normal S~-subgroup of L. Hence by the Schur-Zassenhaus theorem, Z(H) 

possesses a complement K ~ 1 in L which is an S~,-subgroup of L. 

But K _ C and C centralizes Z(H), whence L - -  Z(H) x K and as K is a 

u'-group, we have K charLcharCcharG.  Thus K <  G and consequently 

K ~_ O~,(G)= 1, a contradiction. It follows that C--Fo~(C) ,  thus proving 

Theorem A. 

4. Some consequences of  the main theorem 

Theorem A and the following lemmas and theorems yield important corollaries 

which generalize some well known theorems on finite groups. 

DEFINITION 4.1. Let 01,02,...,0 n be Fitting classes. We shall say that G is 

01 ... On-separable if every composition factor of G is 0i-group for some i,  

l < _ i < _ n .  

NOTE 1. G is a 01"'" 0n-group if G ~ 01"'" 0n, when 01"'" On is a Fitting class. 

NOTE 2. If  a composition factor of G is a 01"" 0n-group then, being simple, 

it is a 0i-group for some i, 1 _< i _ n. 

Thus if 0 is the Fitting class 01"-" On, then G is 0-separable (i.e., every compo- 

sition factor of G is 0-group) if and only if it is 01... 0n-separable. 

LEMMA 4.2. Let 0 be a Fitting class with the Z property, i.e. G/H ~ O, H ~_ Z(G) 

implies that G ~ O. Then Fe(G/H ) = Fo(G)/H for every H ~_ Z(G). 

PROOF. It is clear that HFo(G)/H ~_ Fo(G/H)= R/H. Now R/H cO implies 

R ~ 0. Therefore R/H ~_ Fo(G)/H. 
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COROLLARY 4.3. Let 0 be a Fitting class with the Z property. Then CG(Fo(G)) 

has O-length of  order 1. 

PROOF. Lemma 4.2 and the first part of the proof of Theorem A imply that: 

Fo[C~(Fo(G)/Fo(CG(Fo(G)))] = Fo[C~(Fo(G))/Z(Fo(G)] = Fo(CG(Fo(G)))/Z(Fo(G)) 

1. 

LEMMA 4.4. I f  O and O' are Fitting classes, and i f  O satisfies the Z property, 

then 00' satisfies the Z property. 

PROOF. Let G/H ~ 00' when H ~_ Z(G). By definition [G/H]/[Fo(G/H)I E 0'. 

Thus [(G/H)]/[Fo(G)/H ] ~0' by Lemma 4.2. Therefore G/Fo(G)~O' and we 

obtain G ~ 00'. 

LEMMA 4.5. 

(i) T~'~, has the Z property. 

(ii) T~v~, has the Z property. 

(iii) v~v~, has the Z property. 

PROOF. (i) Let G/H E ? ~ ,  and H ~_ Z(G). By definition there exists a normal 

S~-subgroup K/H of G/H. Since H is a nilpotent group, H = H~ x H~, when 

H~ and H~, are the S~ and S~,-subgroup of H, respectively. Thus H~, is a normal 

S~,-subgroup of K,  and an S~-subgroup K~ of K exists. Since H~, centralizes 

K~, K = K~ x H~,. Hence K~ is a normal S~-subgroup of G, yielding G ~),~T~,. 

(ii) Let G/H ~ ~,~v~, and H ~_ Z(G). Part (i) implies that G has a normal S~-sub- 

group K~. Let R/H be the nilpotent S~,-subgroup of G/H. H~ of part (i) is a 

normal S~-subgroup of R. Hence R = R~, • H~, where R~, is an S~,-subgroup 

of R, hence of G. Since R/H is nilpotent and H ~_ Z(R) we obtain that R is nil- 

potent and so R~, is nilpotent. Thus G E T~v~,. 

Now it is a simple matter to verify (iii). 

THEOREM 4.6. Let Oi 1 <= i < n be Fitting classes. Let C~(F~,o,...on(G)) be 

~)'~,01,"" O~-separable subgroup of a group G. Then 

CG(F~,~,,,,Or..o~(G) ) ~- F~,_7,,Or..o~(G ). 

PROOF. Let 0 denote the Fitting class y~y~,01 ".. 0,. It is clear that Ca(Fo(G)) 

is also 07~G~),-separable and that O~a~r(G ) = 1 (For the meaning of n(G) see 

[2]). By Lemmas 4.5 (i), 4.4 and 4.3 CG(Fo(G)) has 0-length of order 1. Since 

Fo_c~(G) = Fo(G), the main theorem implies the conclusion. 
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COROLLARY 4.7. I f  Ca(F(r ,r~.(G)) is z-separable, n > 2, then Ca(F(r~,y~>,(G)) 

c F(~,~)~(G). 

In particular for n = 2, we obtain that if Ca(O:(G)) is z-separable and O~,(G) = 1, 

then CG(O,(G)) ~-- O~(G). Corollary 4.7 is a generalized version of Lemma 1.2.3 

of Hall-Higman [3]. In the same way, with minor changes, we obtained the next 

three conclusions. 

COROLLARY 4.8 I f  Ca(F(r,~),,(G)) is 7c-solvable, n > 2, then Ca(F(r,~)~(G)) 

~_ F(r ....  ),(G). 

In particular for n = 2 we obtain that if Ca(F(G)) is z-solvable and O~,(G) = 1, 

then Ca(F(G)) ~_ F(G). (Note that O:,(G) = 1 implies that Fv~(G) = F(G)). 

COROLLARY 4.9. I f  G is re-solvable and G--~ G/O~,(G), then Cg(F(G) ) c_ F(G). 

COROLLARY 4.10. I f  Ca(F~ .... )~(G)), n > 2 ,  is a solvable subgroup of a group 

G, then 

Ca(F<~,~,v,~)~(G)) ~- Ffv .... ).(G). 

In particular for n = n(G) we obtain that if CG(F~(G)) is a solvable subgroup 

of a group G, then CG(F~(G)) ~ F"(G), where F~(G) is defined by induction in 

the following way: FI(G)= F(G) and F~(G)/F"-I(G)=F(G/F"-I(G).Corol. 

laries 4.8 and 4.10 are generalized versions of the well known theorem: If  G is 

a solvable group, then CG(F(G)) c F(G). 

THEOREM 4.11. Let G be a group and let G = G/O~,(G ). I l K  is an S:subgroup 

of Fr~,o~(G), then Ca(K ) ~_ Fr ,o~(G) i f  and only if  Cg(F(G)) ~_ F(G). 

PROOF. Set N = NG(K) and suppose that Ca(K ) ~_ F~=,o=(G ). It is well known 

that: If  H <~ G and K is a nilpotent S:subgroup of H then G = Na(K)H. Hence 

G = O,,(G)N. Thus the natural homomorphism of G onto G maps N onto G. 

This implies that there exists a subgroup C on N whose image is Ca(F(G)). 

Since K maps onto Fv=(G) -- F(G) and K-~ N,  it follows that [C, K] ~_ K n O~,(G) 

= 1. Thus C c_ CG(K ) c_ F~,~,(G), whence Ca(F(G) ~_ F(G). 

On the other hand assume that Co(F(G))c_ F(G). Since K maps onto 

F~,(G) = F(G), therefore Ca(K ) maps into Cr consequently Ca(K ) 

maps into F(G). Hence Ca(K ) c_ F~ ,o,(G). 

THEOREM 4.12. I f  K is an S:subgroup of the z-solvable group G, then 

CG(K ~F~ ,v,(G)) _ F~ ,~,(G). In particular Z(K) ~_ F~ ,~,(G). 
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PROOF. Set G = G/O~,(G). Since G is n-solvable, Corollary 4.9 implies that 

Ca(F(G)) ~_ F(G). Now, K n F~,v~(G) is an S~-subgroup of F~,,v~(G). Therefore 

Theorem 4.11 implies that Co(K n F~,v~(G)) ~_ F~ ,~(G). Since Z(K) centralizes 

K N F~ . . . .  (G) it follows, in particular, that Z(K) ~_ F~ .... (G). 

THEOREM 4.12 is a generalized version of the well known theorem: I f  P is an 

Sv-subgrou p of the p-solvable group G, then Ca(P N Op,p(G)) ~_ Ov,p(G). 
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